Cambio climático y turismo

Bas Amelung, bas.amelung@wur.nl

Seminario Agua y Turismo, 2 de octubre de 2015

Personal background

Heredia (Costa 996

Wageningen

- Town 37.000 inhabitants
- 6.500 staff
- 10.000 students

Domains:

- Food/nutrition
- Life sciences

Beach tourism in the Netherlands

Word-cloud of my publication titles

Keynote outline

- Brief general overview
- Two key themes:
 - Mitigation
 - Climate indices
- For each theme: looking back, where do we stand, future perspective
- Vulnerability and adaptation; water
- Options for collaboration
- But first an (even) broader context:
 - Anthropocene

Anthropocene

- Acknowledges the huge influence of human behaviour on the Earth's atmosphere
- 'Anthropo' refers to 'human'
- Cene' refers to a geological epoch, like Pleistocene, Holocene
- Epochs are 'normally separated by significant changes in the rock layers they correspond to'

Planetary boundaries

What about:

- Biodiversity loss...
- Land-system change...
- Nutrient cycles...
- ...and tourism?

Steffen, W. et al. (2015), "Planetary boundaries: Guiding human development on a changing planet", Science 347 (6223)

Central question to me

- How to connect all these (absolute!) global limits and the behaviour of individuals
- Individuals who do not 'feel' these limits
- Tragedy of the Commons

Decarbonizing?

Total annual anthropogenic GHG emissions by gases 1970–2010

IP . Summary for policymakers. Available: www.ipcc.ch

IPCC 2015. Summary for policymakers. Available: www.ipcc.ch

GHG emissions over the next decades

Timeline

Source: Scott, D. & Becken, S. (2010). Adapting to climate change and climate policy: progress, problems and potentials. Journal of Sustainable Tourism 18 (3): 285.

Climate change & Tourism

Source: UNWTO-UNEP-WMO (2008). Climate change and tourism: responding to global challenges. UNWTO, Madrid.

Climate Change and Tourism

Responding to Global Challenges

Tourism Vulnerability 'Hotspots'

Climate change and tourism publications, 1986-2012

VAGENINGEN UR For quality of life Becken (2013). A review of tourism and climate change as an evolving knowledge domain. Tourism Management Perspectives 6: 53–62

CC impact pathways on tourism

Scott D, Gössling S, Hall CM. International tourism and Climate Change. WIREs Clim Change 2012, 3:213–232. doi: 10.1002/wcc.165

For quality of life

Emissions and mitigation

Leading questions

- What is tourism's contribution to greenhouse gas emissions (and radiative forcing)?
- What options are there to reduce emissions?
- How effective are they?

Tourism

Transport

Accommodation

Activities	Subsector	CO ₂ (Mt)	Percentage
	Air transport	515	40
	Car transport	420	32
	Other transport	45	3
	Accommodation	275	21
	Activities	48	4
	Total	1,304	100
	Total world	26,400	
	Tourism contribution		5

Scott, D., Amelung, B., Becken, S., Ceron, J.-P., Dubois, G., Gössling, S., Peeters, P., Simpson, M. 2008. Climate Change and Tourism: Responding to Global Challenges. *United Nations World Tourism Organization (UNWTO), United Nations Environment Programme (UNEP) and World Meteorological Organization (WMO), UNWTO: Madrid, Spain.*

CO₂ emissions 1900-2050

Gössling, S. and Peeters, P. 2015. Assessing tourism's global environmental impact 1900-2050. Journal of Sustainable Tourism, 23(5): 639-659.

Emission growth aviation

"By 2020, global international aviation emissions are projected to be around 70% higher than in 2005 even if fuel efficiency improves by 2% per year. ICAO forecasts that by 2050 they could grow by a further 300-700%."

European Commission 2015. Available: http://ec.europa.eu/clima/policies/transport/aviation/index_en.htm

Beckham-related issues

- Estimated 97% of world population do not participate in international aviation in a given year
- Small share of travellers responsible for comparably large share of emissions
- Individual journeys highly energy-intense

Avoiding dangerous interference with the climate system

Global CO₂ emissions need to decline by 40-70% by 2050 and by 100% before 2100.

In tourism, emission growth by 169% by 2050 expected compared to 2010.

Gössling, S. and Peeters, P. 2015. Assessing tourism's global environmental impact 1900-2050. Journal of Sustainable Tourism, 23(5): 639-659.

Tourism emissions vs. decarbonization needs

 WAGENINGENUR
 Scott, D., Peeters, P., and Gössling, S. 2010. Can tourism deliver its 'aspirational' emission reduction targets? Journal of Sustainable Tourism 18(3), 393-408.

Growth and industry perspectives

Scott, D., Hall, C.M. and Gössling, S. 2015. A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonisation. Journal of Sustainable Tourism, http://dx.doi.org/10.1080/09669582.2015.1062021

Reducing carbon

- Governance: Taxes & regulations
- Tourists: Changes in consumer behaviour
- Technology & carbon management

Energy efficiency gains and absolute emission growth

Long haul aircraft fuel efficiency 4.0 700 Global aviation emissions (Mton/yr Energy Intensity E₁ (MJ/ask) ^{2.5} 0.5 ^{1.5} 1.0 600 500 400 300 00 200 0 100 0.5 0.0 0 1940 1960 1980 2000 2020 2040 2060 **IPCC** values Sigmoidal regression A380 0 Piston powered airliners Additional jet airliners 0 × ж A350XWB B787 Δ Global aviation emissions

Peeters, P., Higham, J., Kutzner, D., Cohen, S. and Gössling, S. 2015. Are technology myths stalling aviation climate policy? *Transportation Research Part D*, submitted

Implications

- We know the mitigation challenge quite well
- The contribution tourism has to/should make is open to debate, but it must be significant:
 - Ultimately, we will have to travel (fly) less.
- But making it happen is a huge challenge:
 - Technology not enough
 - Voluntary behavioural change does not happen
 - Taxes/regulations strongly resisted → political suicide
- \rightarrow How to move forward?
- \rightarrow Issue for destinations: which source markets to target?

→Amsterdam case (Paul Peeters)

WAGEN Foi

Climate indices

Climate as a resource

- Climate and climatic differences drive major tourist flows in the world
- Main one: northern Europe to Mediterranean
- Climate change changes the climate resources and can thus affect the tourist flows
- Early-mid 2000s: let's study how!
- One way: index such as Mieczkowski's (1985) Tourism Climate Index (TCI)

Tourism Climatic Index (TCI)

- Mieczkowski 1985
- Assess climatic elements relevant to the quality of tourism
- 7 monthly climatic variables grouped in 5 sub-indices:
 - **CID**: Daytime Thermal Comfort Index (°C)
 - CIA: Daily Thermal Comfort Index (°C)
 - **P**: Total Monthly Precipitation (mm)
 - S: Hours of Sunshine (h/day)
 - W: Wind Speed (km/h)

 $TCI = 2 \cdot [(4 \cdot CID) + CIA + (2 \cdot P) + (2 \cdot S) + W]$

TCI example

Rating scheme

Deting	Effective temperature (°C)	Mean monthly precipitation (mm/month)	Mean monthly sunshine (hours/day)	Wind speed (km/h)		
Rating				Normal	Trade wind	Hot climate
5.0	20 - 27	0.0 – 14.9	> 10	< 2.88	12.24 _ 19.79	
4.5	19 – 20 & 27 - 28	15.0 – 29.9	9 – 10	2.88 – 5.75		

Ex. BARCELONA (June)

	CID	CIA	Р	S	W
Value	25.6	18.9	36	7.8	11.9
Rating	5	4	4	3.5	4

<u>TCI = 86</u>

 $TCI = 2 \cdot [(4 \cdot CID) + CIA + (2 \cdot P) + (2 \cdot S) + W]$

WAG WAG

TCI example (continued)

Numerical value of indices	Mapping category
90-100 80-89	Excellent
70-79 60-69	Very good and good
50-59 40-59	Acceptable
30-39 20-29 10-19 99 -1020	Unfavorable

For quality of life

TCI example (continued)

Tropics (Rio de Janeiro)

Moderate zones (Amsterdam)

TCI analysis based on grids

Tourism conditions in summer: now and around 2100

Faster Climate change (HadCM3, A1FI)

Slower Climate change (HadCM3, B1)

Ideal Excellent Very good Good Acceptable Marginal Unsuitable Poor

Number of 'very good' months HadCM3 model

SRES A1F

Baseline, 1970s

2010-2039 (`2020s')

2040-2069 (`2050s')

2070-2099 (`2080s')

2

Reflection

- By trying to explore the effects of climate change on climate resources for tourism
- We found out that we know very little about the <u>current</u> relationships
- M-TCI mainly based on expert opinion, not on empirical information, monthly data, not activity specific
- We have to understand the current relationships to explore the impacts of climate change (see Butler)

2008-15: Conducted multiple surveys of tourist climate preferences in varied tourism environments (Scott et al. 2008; Rutty & Scott 2010, 2013, 2014, 2015; Rutty et al. 2014; Hewar & Scott 2015)

Major questions ... Western Europe, Canada + US, Caribbean, China What weather conditions are **ideal** while on holiday?

How resilient are tourists to weather?

... what are the **limits** of acceptability, when will they change travel patterns, when is holiday satisfaction affected

Are these preferences and thresholds culturally robust or do they vary around the world?

Is a single climate index for global tourism feasible?

What is 'Too Hot' for Tourism?: Temperature Preferences for Coastal Tourism

i or quarty or me

Scott & Rutty 2010, 2013

Specification of a Holiday Climate Index for Urban and Beach Destinations

What's in a name? – 'holiday' (leisure tourism) more accurately reflects what the index is designed for

Design Principles:

- designed to <u>overcome all of the limitations</u> of the M-TCI
- Incorporates <u>Thermal</u>, <u>Aesthetic and Physical facets</u> of climate
- overriding effect of the Physical facet is accounted for ... but differently than CIT
- variable rating scales and weighting <u>based on stated tourist</u> <u>preferences</u>
- is adjusted for the climatic requirements of major types of <u>destinations/holidays</u>, where most of global tourism occurs (urban and 3S)

Design principles (continued)

- utilizes <u>daily data</u> (station or gridded)
- rating scale (0-100) user friendly and highly interpretable
- three main types of outputs: (1) average monthly index ratings, (2) probability of optimal and unacceptable ratings (i.e., % of days), (3) sub-index indicators - number/probability of days physical override conditions occur (by wind or rain) or when thermal comfort thresholds are exceeded (too hot or cold).

HCI Specification: Variable Weightings

	То	urist I	Ranki	ngs o	f Wea	ther V	/ariab	les	W	Index eighti (%)	ng
							Urban		HCI -B	HCI -U	M- TCI
	4	2	2	2	3	1	1	1	30	40	50
	2	1	1	3	1	3	3	3	35	20	20
	1	3	3	1	2	2	2	2	25	30	20
WINPY	3	4	4	4	4	4	4	4	10	10	10
	Morgan et al. (2000)	Scott et al.	Credoc (2009)	Moreno (2010)	Rutty & Scott	Scott et al. 208)	Credoc (2009)	Rutty & Scott (2010)		-	Mieckows ki (1985)

Index Formulas:

HCI-u = T*.4 + A*.2 + P (R*.3 + W*.1) HCI-b = T*.3 + A*.35 + P (R*.25 + W*.1) M-TCI = CID.4 + CIA.1 + R.2 + S.2 + W.1 A high HCI rating cannot be achieved with low P (R + W) score, operationalizing the <u>over-riding</u> effect of P.

Tourist Preferences and Thermal Ratings in HCI-beach vs M-TCI

Tourist Preferences and Thermal Ratings in HCI-urban vs M-TCI

Comparing HCI-urban and M-TCI Ratings Across Europe

Comparison of Monthly Average Rating (1961-1990)

Central-Northern

Southern-Mediterranean

For quality of life

Probability (%) of Ideal and Unacceptable Days (1961-1990)

Projected Future Climate Ratings

Probability (%) of Future Ideal & Unacceptable Days

Approach

Figure 2: Average 1981-2010 Holiday Climate Index (beach tourism) for the 4 seasons.

Conclusions indices, future research

- HCI superior to TCI in many respects
- But many issues unresolved:
 - Stated preferences vs actual behaviour
 - Micro-climates
 - Intercultural differences
 - Generalizations possible? Are indices useful?

Vulnerability and adaptation

Vulnerability

- Starting from bottom-up
- No need for climate scenarios: start from business/resort perspective

Vulnerability

Exposure:

- Things that can be affected by climate change (populations, resources, property, and so on)
- The change in climate itself (sea level rise, precipitation and temperature changes, and so on)
- Sensitivity
 - Sensitivity is the degree to which a system will be affected by, or responsive to climate stimuli
- Adaptive capacity
 - Adaptive capacity refers to the potential or capability of a system to adjust to climate change
 - Wealth, technology, education, institutions, information, infrastructure, social capital

Adaptive capacity

Beach tourism vulnerability index

Perch-Nielsen (2010). The vulnerability of beach tourism to climate change—an index approach. Climatic Change 100:579–606

Fig. 1 List of countries showing the relative vulnerability of beach tourism to climate change. Results for exposure (\blacklozenge), sensitivity (\circ), adaptive capacity (\triangle) and all combined (\times) are shown for the standard transformation and weighting

Vulnerability assessment: 5 steps (Fiji)

Step 3: Vulnerability analysis Visualisation of beach – cyclone subsystem

Future: agent perspective?

- How do stakeholders repond to the impacts of climate change (policy)?
- How do they interact with each other?
- Who talks to whom?
- Who are the powerful actors? E.g. role of insurance
- Agent-based modelling
- Workshop in January on ABM and tourism

Interactions in socio-ecological tourism systems

More information: Jillian Student, jillian.student@wur.nl

Water and tourism Looking for collaboration

Water Footprint of tourism

Table 4 Estimated water use in L per guest night for each category and corresponding sub divisions included in the water-use framework for tourism

-	т	·	
٠	٠	٠	

Categories of water-use	Sub division	Estimated water use in L per guest night	Sources
Accommodation ^A	Size, type & facilities Services Property management	750-2125 L 150-625 L 250-1625 L	(Becken, 2014; Gössling, 2015; Gössling et al., 2012; Pratt, 2011; UNWTO, 2013; authors interpretation)
Activities		10-30 L	(Gössling, 2015; Hadjikakou et al., 2013)
Food and drinks	Cuisine Beverages	4625-8375 L 940-1880 L	(Gössling, 2015; authors interpretation)
Travelling	Mode of transport Fuels	42-52 L 5-2500 L	(Gössling, 2015; authors interpretation)
Energy use	Accommodation Activities	45-55 L 10-30 L	(Gössling, 2015; authors interpretation)
Construction & development		9-11 L	(Rosselló-Batle, Moià, Cladera, & Martínez, 2010; authors interpretation)

A Accommodational water-use estimates are based on percentages that do not add up to 100% (c.f. Section $^{-1}$ 3.1.1).

Social Practices Model

Spaargaren, G. (2011). Sustainable Consumption: A Theoretical and Environmental Policy Perspective. Society & Natural Resources: An International Journal, 16, 687–701.

Which are the key principles and conditions for sustainable water use practices for island tourism destinations?

- As part of the process, the following sub-research questions will also be addressed:
- I. What is the water footprint of the tourism sector's main components (i.e. transport, accommodation, attraction) in Texel and other specific island destination settings?
- 2. Within these tourism sector components, how can integrating practice based knowledge and water accounting indices characterize and quantify tourism-related water use in order to identify the most relevant and distinct sets of tourism water practices?
- 3. What transition dynamics are needed and possible for the identified tourism water practices?
- 4. How do various water conservation innovations align with these transition dynamics and what is their effectiveness?

Hotspots and potential hotspots (TCI>50 for 6 months; TCI>70 for 4 monhts))

ICEP<-5</p>

Some findings

- The number of areas with a suitable climate decreases significantly
- Rapid increase in eutrophication potential, in particular for large rivers
- In 1970 30% of (potential) hotspots are calculated to have eutrophication problems; for 2050 this percentage is at least 50%
- Tourism development ambitions may provide a strong rationale for reducing water pollution and nutrient loads.

Follow-up: Blue Flag beaches

MSc thesis project:

- How is water quality projected to develop under scenarios of (climate) change?
- Will beaches still meet the Blue Flag criteria for water quality?
- How important is water quality for beach tourists in the first place???
- Any options for collaboration?
- Good water quality data?

Concluding remarks

- From looking forward to looking back (!)
- From global/general to local/specific
- From top-down to bottom-up
- From partial analysis to holistic
- From `just' climate change to global change

Bas.Amelung@wur.nl

WAGENINGEN UNIVERSITY

Background

Combined effect on tourism?

