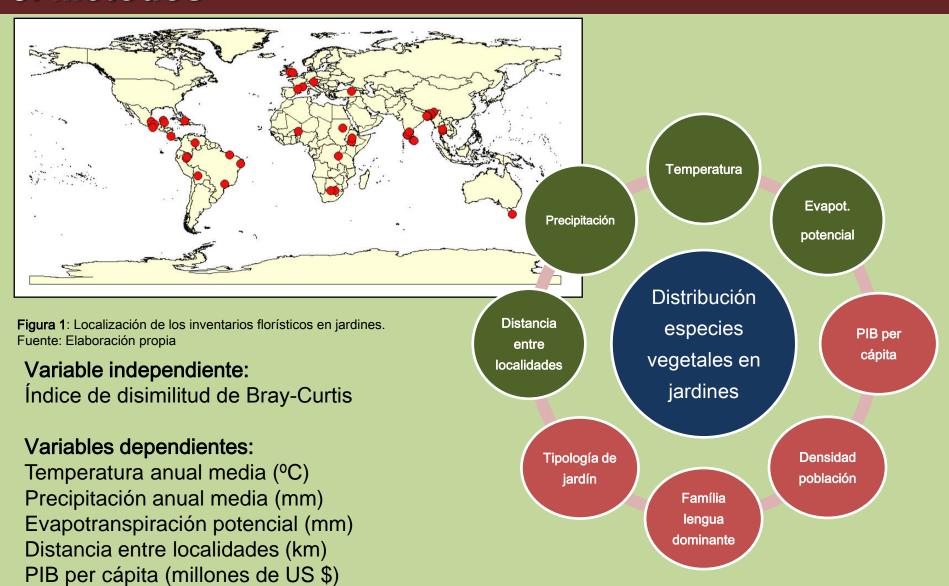
BIODIVERSIDAD VEGETAL EN ESPACIOS URBANOS PRIVADOS: PATRONES DE DISTRIBUCIÓN A ESCALA GLOBAL

Josep Padullés Cubino, Josep Vila Subirós & Carles Barriocanal Lozano

1. Índice

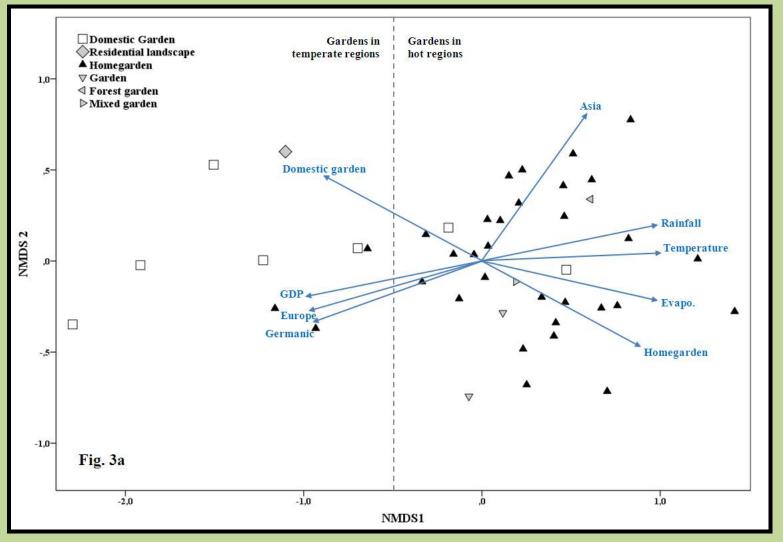
- Introducción y objetivos
- Métodos
- Resultados
- Discusión y conclusiones
- Referencias

3. Métodos


- · Selección de inventarios florísticos.
- Selección de las variables explicativas (biofísicas y socioeconómicas).
- Escalamiento multidimensional no métrico (NMDS).
- Modelo de regresión lineal estándar.

3. Métodos

Densidad de población (personas/km²)


Familia de lengua dominante

Tipología de jardín

3. Resultados

Figura 2: Gráfico de ordenación resultado del análisis de escalamiento multidimensional no métrico (NMDS) sobre la distancia de Bray-Curtis entre la flora cultivada de cada jardín (stress=0,152). Cada símbolo representa una tipología concreta de jardín de acuerdo con la clasificación de los autores. Se representan como vectores los gradientes ambientales biofísicos y socioeconómicos obtenidos como significativos (P <0,01) que indican la dirección del gradiente ambiental (Germanic=idiomas con un mismo origen germánico; Evapo=evapotranspiración potencial; PIB = Producto Interno Bruto per cápita).

3. Resultados

Tabla 1: Resultados de la regresión lineal múltiple de las variables seleccionadas sobre la distancia Bray Curtis de disimilitud (R-cuadrado ajustado: 0.5361). Todas las variables seleccionadas se incluyeron en el modelo final (AIC = -1037,605). Los valores VIF se representan para interpretar la multicolinealidad. P-valor definido como * p <0,01. ** P <0,001.

	Coeficiente	VIF
Constante	0.2336**	
Raíz cuadrada de las diferencias en el PIB per cápita (millones de US \$)	0.0133**	1.7
Raíz cuadrada de las diferencias en la temperatura anual media (°C)	0.0527**	2.3
Raíz cuadrada de la distancia entre localidades (km)	0.0000**	1.2
Raíz cuadrada de la diferencia en la evapotranspiración potencial (mm)	0.0090**	2.1
Localidades con diferente familia de lengua	0.0504*	1.3
Estudios de diferente tipología de jardín	0.0323*	1.4
Raíz cuadrada de la diferencia en la precipitación anual media (mm)	0.0010*	1.1
Raíz cuadrada de la densidad de población (personas/km²)	-0.0014*	1.2

3. Discusión y conclusiones

(Kendal *et al.*, 2012)

PIB PER CÁPITA

"Luxury effect" (Hope et al., 2003)

"Prestige effect" (Kinzig *et al.*, 2005; Grove *et al.*, 2006; Troy *et al.*, 2007)

FLORA NO ADAPTADA A LAS CONDICIONES CLIMÁTICAS

Consecuencias:

- Consumos extraordinarios de energía y recursos.
- Biodiversidad susceptible a las variaciones de las dinámicas socioeconómicas.
- Ecosistemas vulnerables en un escenario de cambio ambiental global.

3. Referencias

- •Grove, J.M., Troy, A.R., O'Neil-Dunne, J.P.M., Burch, W.R., Cadenasso, M.L. & Pickett, S.T.A. 2006. Characterization of households and its implications for the vegetation of urban ecosystems. *Ecosystems*, 9 (4): 578–597.
- •Hope, D., Gries, C., Zhu, W.X., Fagan, W.F., Redman, C.L., Grimm, N.B., Nelson, A.L., Martin, C. & Kinzig, A. 2003. Socioeconomics drive urban plant diversity. *Proceedings of the National Academy of Sciences of the United States of America*, 100: 8788–8792.
- •Kendal, D., Williams, N.S.G. & Williams K.J.H. 2012. A cultivated environment: Exploring the global distribution of plants in gardens, parks and streetscapes. *Urban Ecosystems*, 15: 637-652.
- •Kinzig, A.P., Warren, P., Martin, C., Hope, D. & Katti, M. 2005. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. *Ecology and Society*, 10 (1): 23.
- •Larsen, L. & Harlan, S.L. 2006. Desert dreamscapes: residential landscape preference and behavior. *Landscape and Urban Planning*, 78 (1–2): 85–100.
- •Troy, A.R., Grove, J.M., O'Neil-Dunne, J.P.M., Pickett, S.T.A. & Cadenasso, M.L. 2007. Predicting opportunities for greening and patterns of vegetation on private urban lands. *Environmental Management*, 40 (3): 394–412.
- •Yabiku, S.T., Casagrande, D.G. & Farley-Metzger, E. 2008. Preferences for landscape choice in a Southwestern desert city. *Environment and Behavior*, 40 (3): 382–400.